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Abstract

This paper introduces a generic theoretical framework for predictive learning, and relates it to data-driven and learning applications in earth and

environmental sciences. The issues of data quality, selection of the error function, incorporation of the predictive learning methods into the

existing modeling frameworks, expert knowledge, model uncertainty, and other application-domain specific problems are discussed. A brief

overview of the papers in the Special Issue is provided, followed by discussion of open issues and directions for future research.
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1. Introduction

In this editorial paper, we have attempted to reach the

following goals (i) to introduce to practitioners a generic

framework of the predictive learning (PL) approach (Section 2);

(ii) to introduce a simple classification and a brief review of the

PL applications in earth and environmental sciences, and

discuss specific issues related to these applications (Section 3);

(iii) to briefly overview the papers included in this issue

(Section 4); and (iv) to highlight the open issues and future

research directions.
2. Framework for predictive learning

The problem of predictive learning (aka inductive learning,

machine learning, or learning from examples) can be described

in different ways (Mitchell, 1997; Ripley, 1996). In this paper,

we adopt the framework of statistical learning (Cherkassky &

Mulier, 1998; Friedman, 1994; Vapnik, 1982) shown in Fig. 1.
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The setting for predictive learning (PL) involves three

components:

† Generator of random input vectors x, drawn independently

from a fixed (but unknown) probability distribution P(x);

† System (or teacher) which returns an output value y for

every input vector x according to the fixed conditional

distribution P( yjx), which is also unknown;

† Learningmachine, which implements a set of approximating

functions f(x,w),wherew is a set of parameters of an arbitrary

nature.

The goal of learning is to select a function (from this set)

which approximates best the System’s response. This selection

is based on the knowledge of finite number (n) of training

samples (xi,yi), (iZ1,.,n) generated according to (unknown)

joint distribution P(x,y)ZP(x)P( yjx).

The quality of an approximation produced by the learning

machine is measured by the discrepancy or loss L(y, f(x,u))
between the true output produced by the System and its

estimate produced by the learning machine for given input x.

By convention, the loss takes on non-negative values, so that

large positive values correspond to poor approximation. The

expected value of the loss is given by the prediction risk

functional:

RðuÞZ

ð
Lðy; f ðx;uÞÞdPðx; yÞ (1)
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Learning is the process of finding the function f(x,u0), which

minimizes the risk functional (1) over the set of functions

supported by the learning machine, using only finite training

data (since P(x,y) is unknown). We also point out that the loss

function L(y, f(x,u)) is given a priori based on the problem/

application requirements. The prediction risk (1) is unknown,

but in practice can be estimated using an independent test set,

or via resampling techniques. This formulation (as stated

above) is very general and describes many learning problems

such as interpolation, regression, classification, and density

approximation (Cherkassky & Mulier, 1998; Friedman, 1994;

Hastie, Tibshirani, & Friedman, 2001; Vapnik, 1982, 1995).

The problem encountered by the learning machine is to

select a function (from the set of functions it supports) that best

approximates the System’s response. The learning machine is

limited to observing finite number (n) examples in order to

make this selection. This training data as produced by the

generator and system will be independent and identically

distributed (iid) according to the joint probability density

function (pdf) p(x,y). The finite sample (training data) from this

distribution is denoted by:

ðxi; yiÞ; ðiZ 1;.; nÞ (2)

With finite data, we cannot expect to find the solution

f(x,u0) minimizing prediction risk (1) exactly, so we denote

f(x,u*) as the estimate of the optimal solution obtained with

finite training data using some learning procedure. It is clear

that any learning task (regression, classification, etc.) can be

solved by minimizing (1) if the density p(x,y) is known. This

means that density estimation is the most general (and hence

most difficult) type of learning problem. The problem of

learning (estimation) from finite data alone is inherently ill

posed. To obtain a useful (unique) solution, the learning

process needs to incorporate a priori knowledge in addition to

data. For example, such a priori knowledge may be reflected in

the set of approximating functions of a learning machine.

Note that a generic learning system shown in Fig. 1 may

have two distinct interpretations. Under classical statistical

framework, the goal of learning is accurate identification of the

unknown System, whereas under predictive learning (PL) the

goal is accurate imitation (of a System’s output). It should be

clear that the goal of system identification is much more

demanding than the goal of system imitation. For instance,

accurate system identification does not depend on the

distribution of input samples; whereas good predictive model

is usually conditional upon this (unknown) distribution. Hence,
Generator 
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Machine

System

x

y

ˆ y 

Fig. 1. A learning machine using observations of the system to form an

approximation of its output.
an accurate model (in the sense of System’s identification)

would certainly provide good generalization (in the predictive

sense), but the opposite may not be true. The mathematical

treatment of system identification leads to the function

approximation framework, and to fundamental problems of

estimating multivariate functions known as the curse of

dimensionality. On the other hand, the goal of accurate system

imitation (via minimization of prediction risk) leads to more

tractable learning formulations under finite sample settings

(Vapnik, 1982, 1995). However, the VC-theoretical approach

to PL also requires an appropriate learning problem formu-

lation. This problem specification step performs mapping of

application-domain requirements onto an appropriate PL

formulation, as discussed in Section 3.

Many learning methods are based on the standard

(inductive) formulation of the learning problem presented

above. For example, a given application is usually formalized

as either standard classification or regression problem, even

when such standard formulations do not reflect application

requirements. Such inductive learning settings assume that:

† the number of future (test) samples is very large, as implied

in the expression for risk (1). Moreover, the input (x) values

of test samples are unknown during model estimation

(training);

† the goal of learning is to model the training data using a

single (albeit complex) model;

† the learning machine (in Fig. 1) has a univariate output;

† specific loss functions are used for classification and

regression problems.

These assumptions may not hold for many applications. For

example, if the input values of the test samples are known

(given), then an appropriate goal of learning may be to predict

outputs only at these points. This leads to the transduction

formulation (Vapnik, 1995). Relaxing the assumption about

estimating (learning) a single model leads to multiple model

estimation formulation (Cherkassky & Ma, 2005). Likewise, it

may be possible to relax the assumption about a univariate

output under standard supervised learning settings. In many

applications, it is necessary to estimate multiple outputs

(multivariate functions) of the same input variables. Such

methods (for estimating multiple output functions) have been

widely used by practitioners, i.e. partial least squares (PLS)

regression in chemometrics (Frank & Friedman, 1993).

Further, standard loss functions (in classification or regression

formulations) may not be appropriate for many applications.

Even though the problem specification step cannot be

formalized, we suggest several useful guidelines to aid

practitioners in the formalization process (Cherkassky, 2001,

2005). The block diagrams for mapping application require-

ments onto a learning formulation (shown in Fig. 2) advocates

the top–down process for specifying three important com-

ponents of the problem formulation (loss function, input/output

variables, and training/test data) based on application needs. In

particular, this may include:



APPLICATION    NEEDS

Loss
Function

Input, output,
other variables

Training/
test data

Admissible
Models

FORMAL PROBLEM STATEMENT

LEARNING THEORY

Fig. 2. Mapping application requirements onto a formal learning problem

formulation.
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† Quantitative or qualitative description of a suitable loss

function, and relating this loss function to ‘standard’

learning formulations.

† Description of the input and output variables, including

their type, range, and other statistical characteristics. In

addition to these variables, some applications may have

other variables that cannot be measured (observed)

directly, or can be only partially observed. The knowledge

of such variables is also beneficial, as a part of a priori

knowledge.

† Detailed characterization of the training and test data.

Here, the training data refers to the data used for model

estimation, and test data denotes future data that will be

applied to the model. This includes information about the

size of the data sets, knowledge about data generation/col-

lection procedures, etc. More importantly, it is important to

describe (and formalize) the use of training and test data in

an application-specific context. We emphasize that these

notions of training and test data relate to the problem

formulation, rather than to a particular learning algorithm.

Hence, we do not specify here the validation data (a portion

of training data used for model complexity control, or

tuning hyper-parameters of a learning method). Specifica-

tion of the validation data set may be a part of the learning

algorithm (using data-driven complexity control). How-

ever, model complexity control can be performed (in

principle) analytically, in which case there is no need for

validation data.

Based on a good understanding and specification of these

three components, it is usually possible to define a set of

admissible models (or approximating functions) shown in

Fig. 2. Finally, the formal learning problem statement needs to

be related to some theoretical framework (denoted as learning

theory in Fig. 2). In practice, this formalization process

involves a number of iterations, simplifications and trade-offs.

Clear understanding of the components shown in Fig. 2 is
useful for understanding the relationship between the learning

formulation, application needs, and assumed theoretical

paradigm or learning theory. Such an understanding is critical

for evaluating the quality of predictive models and interpret-

ation of empirical comparisons between different learning

algorithms.

In practice, before data is fed into the learning machine, it

has often to be pre-processed, normalized, or undergoes some

non-linear transformations (Pyle, 1999). Applications in earth

and environmental sciences often have specific characteristics

that influence the way the learning problems are posed and

solved. An important feature of such problems is that data is

either scarce and requires gaps in-filling; or there are so many

system variables and/or so many examples that they have to be

combined into some aggregates. The following sections will

address these and other application-specific issues related to

data encoding and pre-processing.
3. Earth sciences and environmental applications:

main characteristics

In the 1990s, the field of PL matured; several clear and

fundamental textbooks have been published (Beale & Jackson,

1990; Bishop, 1995; Cherkassky & Mulier, 1998; Haykin,

1994; Ripley, 1996; Vapnik, 1995, 1998) that introduced this

new powerful statistical (or PL) approach (especially, its

particular case—the neural network (NN) technique) that is

capable of providing a diverse family of flexible non-linear

data-driven models for various applications. The message was

sent to the broad community of professionals including

scientists working in different fields of geosciences like

satellite remote sensing, meteorology, oceanography, geophy-

sical numerical modeling, hydrology, etc. Since then, a

significant number of PL applications have been developed

in these fields; the most important of them are summarized

here:

† Satellite meteorology and oceanography (e.g. classification,

pattern recognition, retrieval algorithms, etc.);

† Hybrid climate and weather numerical models and data

assimilation systems (e.g. fast emulation of physical

processes, fast forward models for data assimilation);

† Geophysical data fusion and data mining;

† Interpolation, downscaling, non-linear multivariate statisti-

cal analysis (various areas);

† Hydrologic applications (e.g. modeling rainfall–runoff

relationships, flood forecasting, precipitation forecasting).

A number of these applications have been reviewed in

several survey papers. Selected atmospheric and oceanic

applications have been reviewed by Gardner and Dorling

(1998), Krasnopolsky and Chevallier (2003), and Krasno-

polsky and Fox-Rabinovitz (2006). Selected remote sensing

applications have been reviewed by Atkinson and Tatnall

(1997) and Krasnopolsky and Schiller (2003). Applications of

the NN technique for developing non-linear generalizations of

multivariate statistical analysis have been recently reviewed by
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Hsieh (2004). Solomatine (2005) reviewed the applications of

machine learning in hydrology.

A large number of important practical applications in

environmental and earth sciences (many of applications

presented in this issue) may be considered mathematically as

a mapping between two vectors x (input vector) and y (output

vector) and can be symbolically written as:

yZMðxÞ; x2R
n; y2R

m (3)

For example, a generic application that can be formally

considered as a mapping (3) is a retrieval algorithm (or transfer

function) in the satellite remote sensing that converts the input

vector x of satellite measurements (calibrated or raw radiances,

brightness temperature, backscatter coefficients, etc. at differ-

ent frequencies) into the vector y of geophysical parameters

(wind speeds, atmospheric moisture parameters, ocean and

land surface characteristics, etc.). Examples of such appli-

cations in this Special Issue include papers by Loyola, and

Brajard et al. It is noteworthy that the components of the vector

x may be intercorrelated because the frequency bands may be

not completely independent and overlap. The components of

the output vector y may be intercorrelated because the

corresponding geophysical parameters are physically related.

The mapping (3) in this example is usually a complicated non-

linear mapping.

Another example of an important application that can be

cast as a mapping (3) is a parameterization of atmospheric

physics in climate or weather prediction numerical models.

Here, the input vector x is composed of several functions of

height or profile (temperature, humidity, ozone concentration,

etc.) and some scalar characteristics. The output vector y is

composed of functions of height (e.g. the long wave heating

rates) and several scalar characteristics. The components of the

vector x can be significantly intercorrelated and also

components of the vector y can be significantly correlated

because (i) they are physically related and (ii) they are related

as the discretized values (elements of profile) of the same

continuous function at close values of the argument. The

mapping (3) is also a complicated non-linear mapping in this

case because the atmospheric physics processes are compli-

cated non-linear ones. The mapping may contain a finite

number of finite discontinuities (like step functions) due to

intervention of atmospheric moisture processes. This appli-

cation is presented in this issue by the paper by Krasnopolsky

and Fox-Rabinovitz.

Two features mentioned above: (i) correlation between

components of input and output vectors and (ii) significant non-

linearity of the input/output relationship are quite generic

features of environmental and earth science applications.
3.1. Measuring model error

As mentioned in Section 2, the choice of the adequate loss

function (model error) is quite important. In modeling natural

phenomena, a typical model error function in regression

problems is either root mean squared error (RMSE) or similar
functions closely related to RMSE, and this fits very well a

typical error used in PL. However, there are situations when

RMSE, following the principle ‘good on average’, cannot

guarantee that the model performance is optimal in critical

situations. For example, in hydrologic forecasting for flood

management machine learning models are trained to predict

water flow several hours ahead on the basis of past records of

rainfall and flow. It is important to ensure that the models

perform well during extreme events leading to floods. In this

case, the use of RMSE error calculated over an extended

modeling period may not be appropriate.

A better alternative in this case is the use of a weighted

RMSE where the records corresponding to high rainfall or flow

are assigned higher weight. However, during extreme events

data usually contain a significantly higher level of observation

noise; thus, weighting these data, without clear understanding

and taking into account the noise statistics, may lead to an

increase in the uncertainty in the NN weights and, therefore, in

the uncertainty of NN predictions. An example of training

ANN with different loss functions that better reflect the model

error in hydrologic context than RMSE is reported, for

example, by de De Vos and Rientjes (2005). In this issue, the

paper by Dawson, See, Abrahart, and Heppenstall also deals

with this issue by introducing a NN optimization routine that is

very well fitted for any type of the error function. In

classification problems, there is also a need of handling non-

standard error functions: the paper by Bhattacharya and

Solomatine deals with a particular clustering and classification

problem where the standard model error criteria are modified to

reflect the contiguity constraints specifically tailored for soil

classification applications.

Another alternative is to separate the error calculation for

extreme events is training separate models for low and high

flows or low and high precipitation conditions, and combining

them in a modular scheme; this approach is, for example,

reported in this issue by Solomatine and Siek.
3.2. Heterogeneous and complex nature of data

Data characterizing natural phenomena often originates

from different heterogeneous sources, ranging from historical

paper-based records to fully automated sensors measuring

environmental variables. Sometimes the collected data covers

long periods (often with gaps, however), but often it is

collected during short measurement campaigns. Another

problem is that the periods when one group of variables is

measured (e.g. water levels or flows) does not necessarily

coincide with the periods of other measurements (e.g.

temperature or atmospheric pressure). All this leads to the

problem of constructing representative training data sets upon

which a meaningful predictive model can be estimated.

Other problems include noise in the data (due to unknown

sources of errors, as well as measurement errors), impossibility

to have full geographical coverage during data collection (in

case of building distributed models), and, especially in

environmental modeling, lack of relevant data.
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There are also applications characterized by very large data

sets, especially in oceanography and climate modeling, and in

analysis of remote sensing data. In such situations, efficient

methods to reduce the problem dimension and to discover the

hidden patterns are needed—they would allow for additional

analysis and even knowledge discovery. A representative

example of such an approach is presented in this issue by Ilin,

Valpola, and Oja who apply an advanced version of ICA for

data reduction and knowledge discovery.

Databases in geosciences are heterogeneous and incomplete

information systems composed of large numbers of objects,

described in terms of an increasing number of properties.

Locational attributes aside, the properties describing objects

are highly heterogeneous: some are quantitative, some

qualitative, and others more complex, such as time series,

spectra, images, etc. Although the quality of information is

enriched, the use of such attributes adds complexity and

heterogeneity to the analysis. An extra complication in

geoscience databases is the problem of missing data. In

addition, developments in modern monitoring, laboratory and

observation equipment lead to increasingly large databases.

Moreover, the uncertainty in measurements and observations

contribute to database complexity.

The development of appropriate machine learning tech-

niques in this case must face the additional problem of

accounting for the spatial and temporal dependencies derived

from the dynamic nature of earth and environmental processes

on one hand, and the geo-referenced relations of the data. The

overall consideration of all of these aspects poses considerable

challenges.

Because of the sparseness of the environmental data,

scarcity of the extreme events, and unavailability of some

types of measurements, in many applications data simulated

by physically-based models are used for training data-driven

(i.e. NN) models. Sometimes, they are used instead of

observed data; or they are used to complement the observed

data and are integrated with it to form a blended data set.

Because the observed and simulated data have different error

statistics, the use of a proper blending technique that takes

care of different error characteristics is very important. Data

assimilation systems extensively used in weather and climate

prediction to generate initial conditions for running

numerical weather prediction and climate simulation models

may serve as an example of such a proper data integration

system.
3.3. Fitting machine learning models into existing

modeling frameworks

In practice, machine-learning models are to be built

in situations when there are already existing models which

are typically process models (descriptive, behavioral, and

physically-based) and domain experts are trained in using

them. Challenge is in introducing very different paradigm of

modeling—data-driven modeling based on PL methods—and

its incorporation into the existing modeling frameworks.
Traditional complex environmental numerical models are

deterministic models based on ‘first principle’ equations. They

are formulated using relevant first principles and observational

data, and are usually based on solving deterministic equations

(such as radiative transfer equations) and some secondary

empirical components based on traditional statistical tech-

niques like regression. Thus, for widely used the state-of-the-

art environmental models (like global climate model (GCM) or

numerical weather prediction models) all major model

components are predominantly deterministic; namely, not

only model dynamics but also model physics and chemistry

are based on solving deterministic first principle physical or

chemical equations.

Only recently attempts have been made to introduce major

statistical components into such physically-based models, like

an attempt to apply a traditional statistical technique as the

expansion of hierarchical correlated functions to approximate

atmospheric chemistry components (Schoendorf, Rabitz, & Li,

2003). This traditional statistical technique was applied

successfully but had limited accuracy. Significantly, higher

accuracy requirements must be met for such complex

multidimensional and interdisciplinary systems as modern

environmental and earth sciences models. A particular type of

PL technique, namely NN technique, has been successfully

applied for the development of new and for emulation of

existing atmospheric and ocean physics parameterizations

(Chevallier, Chéruy, Scott, & Chédin, 1998; Krasnopolsky,

Breaker, & Gemmill, 1997; Krasnopolsky, Chalikov, &

Tolman, 2002; Krasnopolsky, Fox-Rabinovitz, & Chalikov,

2005). Hybrid numerical models were introduced which are

based on a synergetic combination of deterministic numerical

modeling with PL modules emulating model components

(Krasnopolsky & Fox-Rabinovitz, 2006).

3.4. Emulation of physically-based process models

Sometimes the learning models are used not to emulate a

modeled phenomenon directly but to mimic or emulate a

process (physically-based) model of this phenomenon, that is

to perform meta-modeling. Such models are also called

surrogate models, and they are trained on the data generated

or simulated by process models.

In hydrology and hydraulics, two applications can be

mentioned. Solomatine and Torres (1996) used hydrologic

and hydrodynamic models of river flows to generate enough

data to train a neural network that would forecast the water

levels. This fast-running replica was used during solving a

problem of optimizing the water reservoir operation. Another

example is reported by Khu, Savic, Liu, and Madsen (2002)

where a NN replica of a hydrologic model was used to

accelerate the process of its calibration.

Such an approach has also been developed in modeling

atmospheric and oceanic processes (Chevallier et al., 1998;

Krasnopolsky et al., 1997, 2000; Krasnopolsky et al., 2005)

(presented in this journal issue by Krasnopolsky and Fox-

Rabinovitz). Following this approach, authors developed NN

emulations that are from one to five orders of magnitude faster
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than original physically based models. The authors also

showed that combining these PL (NN) components with

deterministic, physically-based ones and creating fast hybrid

numerical modes offers new opportunities for numerical

climate and weather prediction.

Another example is reported in the paper by Loyola in this

issue where an ensemble of neural networks is used to emulate

complex radiative transfer models for the purpose of modeling

ozone column behavior. The resulting learning model runs

much faster than the simulation model, which is very important

for real-time ozone monitoring using satellites.

Note, that as explained in Section 2, such surrogate models

do not attempt to perform the system identification, but only to

approximate (imitate) the system output.

3.5. Challenges in acceptance of data-driven models

Due to the characteristics of the earth and environmental

applications, domain experts typically constitute an important

part of the whole modeling cycle. A challenge is to increase the

role of domain experts in tuning the learning models. Some PL

algorithms directly involve experts in the process of building

models: for building decision trees (Ankerst et al., 1999), or for

model trees (Solomatine & Siek, this issue).

Criticism often heard from the builders and users of process

models is that PL models are ‘black-boxes’ that do not reflect

the physics of the modeled process. In other words, the PL

models are imitation models rather than system identification

models (see Section 2). Indeed, equations induced by PL

models have very different form if compared to the equations

describing the physics (or chemistry) of the modeled processes.

Clear understanding and analysis of the underlying physical

processes is very important PL modeling. The results of such

analysis are reflected in the relevant input and output variables

(see Fig. 2).

In hydrological applications, for example, good under-

standing of the modeled hydrological unit (catchment) helps in

the choice of the input variables. If the problem is river flow

forecasting, increase in flow now is induced by the increased

rainfall in the past, and the good knowledge of the catchment

should be the basis for choosing the proper lags with which

rainfall time series are brought into the PL model. Addition-

ally, correlation analysis and mutual information can be used

for variable selection.

There is no doubt that the black-box nature of the data-

driven models provided by most machine learning procedures

is one of the most important factors conditioning the reluctance

of domain experts to accept them, even when they exhibit good

performance. For example, understanding neural network

based models may be obscured by the intricacies of its

architecture and the sheer number of its parameters (weights).

In the case of a fuzzy system, the set of fuzzy rules might be

large and complex. Moreover, the number of linguistic

variables required and the collection of membership functions

might be large as well. In this respect, attention should be paid

to the use of meta-learning techniques aiming at (i) analyzing

black-box models with the purpose of deriving explanatory
knowledge about their properties and operation, and (ii) direct

construction of deterministic models described by analytical

functions.

Analytic functions describing with physical systems in

general, have had a long history in science. They are easier to

understand by humans, the preferred building blocks of

modeling, and a highly condensed form of knowledge.

Regression is an example where the family of functions is

restricted to a few ones (typically just one), and the problem

reduces to finding a set of parameters or coefficients, which

make the function, fulfill some desirable approximation

property (for example, minimizing a least squares error). A

possible approach could be training a number of simple (linear)

functions, comprising an overall non-linear mapping (appli-

cation of this approach in hydrology has been reported by

Solomatine and Dulal (2003), and is also addressed in this issue

by Solomatine and Siek). However, direct discovery of general

analytic functions poses enormous challenges because of,

among many other problems, the (potentially) infinite size of

the search space, and the need of approximate arbitrary

complex non-linearities.

In this respect, the developments in evolutionary compu-

tation algorithms, in particular those within the branch of

genetic programming, have an interesting potential (see, e.g.

Liong et al., 2002). The analytical expressions obtained may

approximate a broad scope of non-linearities, and the analysis

of the impact of the input variables in the model can be directly

examined by looking at the nature of the functional

dependencies in which the different variables are involved.

Moreover, sensitivity analysis is considerably simplified

because of the existence of an explicit functional relationship.

However, often the analytic expressions found are very

complex, and since for a given problem there might be many

different functions satisfying the same approximation con-

straints, the functions found may mask simpler functional links

between the input and the target variables, which would be

more meaningful to a domain expert.
3.6. Dealing with model uncertainty

The PL (NN) technique is a non-linear statistical approach.

As any statistical approach, the NN technique is expected to

provide not only a minimization of an error function and a

single-point prediction, but also an estimate of the uncertainties

in the model weights and outputs (predictions). Because of the

non-linear nature of the NN technique, an estimation of the NN

uncertainties is a more complicated business than that in the

case of linear statistical tools and models. However, during last

decade a progress has been made in this filed both for the case

of NNs with a single output (Bishop, 1996; Heskes, 1997;

Nabney, 2002; Neal, 1996; Nix & Weigend, 1994) and with

multiple outputs (Aires, Prigent, & Rossow, 2004). Various

Bayesian methods have been used in these studies to estimate

the uncertainties for the NN parameters (weights). In this issue,

a new method to estimate the prediction uncertainty is

proposed by Shrestha and Solomatine.
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It is a fact a life that regardless of the generalization

performance or interpretability of a prediction model, from the

point of view of a decision maker, the value of a prediction

depends on the availability of additional information regarding

the dependability of the prediction, and risks associated with

decisions taken upon this prediction. In earth and environmen-

tal sciences, such risks associated with decisions based on

model predictions are especially large. Therefore, deriving

appropriate techniques for estimating uncertainties associated

with predictions provided by data-driven models is of utmost

importance.

4. Papers in this issue

The contributions to this issue are clustered according to

three application-domains as follows.

4.1. Climate

This section includes four contributions. The paper by

Vladimir Krasnopolsky, Michael Fox-Rabinovitz and Ming-

Dah Chou deals with the use of NNs in emulating very complex

models atmospheric long wave radiation: their approach

considerably reduced the total running time of a global climate

model. The paper by Yonas Dibike and Paulin Coulibaly

successfully applied temporal NN to the important problem of

downscaling the global climate models outputs in order to use

them in the climate change impact studies. The paper by

Aiming Wu and William Hsieh deals with the forecasts of the

tropical pacific sea surface temperature based on an ensemble

of NNs. All three of the mentioned papers demonstrate high

effectiveness of applying different types of NNs (or their

ensembles as in the paper by Wu and Hsu) to either predict

environmental variables, or to emulate a process model. The

paper by Alexander Ilin, Harri Valpola, and Erkki Oja

describes the application of a new powerful extension of

PCA (denoising source separation) to the climate data analysis.

Their approach shows the possibility of discovering patterns in

climate data, in this case leading to a very interesting result of

detecting a well-known effect of El Nino—being the

component with the highest interannual variability.

4.2. Earth and ocean

Since the global processes on the Earth and in the ocean

directly influence the climate, this section closely relates to

the previous one. It includes five contributions. The paper by

Diego Loyola reviews various types of model mixtures and

applies modular NNs to the processing of earth observation

satellite data—for the determination of cloud properties and

for the retrieval of total columns of ozone. The developed

algorithms are currently being used for the operational

processing of European atmospheric satellite sensors. The

contribution by Julien Brajard, Cedric Jamet, Cyril Moulin,

and Sylvie Thiria addresses an issue of improving the

estimates of the chlorophyll concentrations in the ocean

based on the satellite on-board sensors measuring the solar
radiation reflected by the ocean and the atmosphere. Such

estimates are based on the models of radiative transfer

simulation, and NNs were successfully used as such models.

The paper by Biswa Bhattacharya and Dimitri Solomatine

deals with the issue of training NN and SVM classification

models that would predict the soil types on the basis of so-

called cone penetration tests that generate data on the soil

friction and resistance. The paper by Julio Valdes and

Graeme Bonham-Carter addresses an issue of detecting the

state changes in complex processes (with application to the

paleoclimate and solar data) by generating collections of

time-dependent non-linear autoregressive models represented

by a special kind of neuro-fuzzy NNs that are generated by

model-mining procedures. The paper by Biswa Bhattacharya

and Dimitri Solomatine deals with a problem of predicting

the sedimentation in a large port 3 weeks in advance. The

predictive models were NNs and M5 model trees and one of

the problems to solve was the identification of the proper

time lags for the variables characterizing wind, waves and

river flow and data pre-processing based on the inclusion of

the physical processes of sedimentation.

4.3. Hydrology

The three contributions in this section deal typically with the

processes having a shorter time scale. In the paper by Dimitri

Solomatine and Michael Siek, a number of approaches to

combining modular learning models are presented (including

the new algorithms for optimization of building M5 piece-wise

liner model trees), and their use is illustrated by building the

models for the water flow predictions. The paper by Durga Lal

Shrestha and Dimitri Solomatine addresses the issue of model

uncertainty by introducing and testing a new method for

estimating the prediction intervals for the model outputs; its

usefulness is demonstrated on the rainfall–runoff NN models.

The paper by Christian Dawson, Linda See, Bob Abrahart, and

Alison Heppenstall describes a symbiotic adaptive neuro-

evolution method advancing on traditional evolutionary

approaches by evolving and optimizing individual neurons.

The method is applied to rainfall–runoff modeling, with the use

of alternative model error functions that better fit the

hydrological situation. This section of the issue reflects some

of the latest developments in and applications of predictive

learning to water-related issues, that are often associated with

the area of hydroinformatics. The authors focus on relatively

non-standard ways of building predictive models for solving

the water-related issues—local modeling of input sub-spaces

and fuzzy combination of the resulting models, adaptive

evolutionary optimization of NNs, and constructing the

predictive models of model uncertainty.

5. Conclusion and open issues

Applications of new modeling methods in relation to the

earth and environmental sciences have high social, humanitar-

ian and economic value. Predictive learning provides a

powerful framework for building effective data-driven models
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that can complement and in many instances even replace the

traditional process models. Often these models are faster than

the process numerical models and can be used as their replicas

that are included into the process modeling frameworks leading

to the hybrid models, or included in the model-based

optimization procedures.

There are a number of specific characteristics of such

applications, as detailed in Section 3. Even though predictive

learning methods often yield very effective models, their use is

never straightforward, and one should pay special attention to

incorporating prior knowledge (about underlying physical

processes) into the learning problem formulation, selection of

appropriate learning methods, and evaluation of modeling

results. For example, standard (RMSE) error functions used in

the NN ‘textbook’ training procedures sometimes have to be

updated to reflect better typical (heavy-tail) error distributions,

or instead of a single model a number of local models have to

be trained that would better reflect the heterogeneous nature of

the data.

There are a number of open issues related to the applications

of PL in earth and environmental sciences. In our view, the

most important ones are the following:

1. The quality of data in these applications is often lower than

in many other applications (for example, those in industry).

So the challenge is to choose/design robust learning

methods that can handle better heterogeneous data, missing

data and non-standard noise.

2. Acceptance of PL methods in the communities traditionally

accustomed to process models. An important practical issue

is the incorporation of PL methods into existing modeling

frameworks, including better incorporation of application–

domain knowledge. In many applications in earth and

environmental sciences, predictive models are actually

used not for prediction per se, but for policy/decision-

making (i.e. debate on global warming). So the notions such

as the model interpretability and model uncertainty become

very important. These issues, strictly speaking, lie outside

the scope of traditional PL framework, which is concerned

only with prediction accuracy (generalization). Hence,

more research is definitely needed in this direction.

3. In earth and environmental sciences, there is a growing

demand for having predictions that have some sort of

uncertainty estimates associated with them. The approaches

based on the Monte-Carlo sampling and running the process

models could be computationally too demanding to be

practical. PL methods make it possible to build models of

uncertainty trained on the historical data and the database of

the (process) model runs.

In conclusion, we emphasize that earth and environmental

sciences represent an important practical domain for machine

learning and predictive learning methods. This SI provides a

systematic view of this field, and hopefully, will lead to further

advances and concentrated research efforts along the issues

outlined above.
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